
March 2006 www.stsc.hill.af.mil 9

Factors Affecting Personal Software Quality

Understanding the factors that influence software quality is crucial to the continuing maturation of the software industry. An
improved understanding of software quality drivers will help software engineers and managers make more informed decisions
in controlling and improving the software process. Data from the Personal Software ProcessSM provides insight into interper-
sonal differences between competent professionals as increasingly disciplined processes are adopted. Program size, (empirically
measured) programmer ability, and disciplined processes significantly affect software quality. Factors frequently used as sur-
rogates for programmer ability, e.g., years of experience, and technology, e.g., programming language, do not significantly
impact software quality, although they may affect other important software attributes such as productivity. An understanding
of these factors may help managers implement practices that support high-quality software.

Dr. Mark C. Paulk
Carnegie Mellon University

The research reported in this article was
part of a larger investigation into the

relationship between process discipline and
software quality [1]. It focuses on the prod-
uct, technology, and programmer ability
factors that may affect software quality in
addition to the process factors. My research
confirms that a disciplined process affects
software quality. It also confirms that pro-
grammer ability affects software quality
and, more importantly, shows that even top
performers can improve their performance
by a factor of about 2X by following disci-
plined processes. Commonly used surro-
gates for ability such as seniority and acad-
emic credentials are, however, likely to be
ineffective measures.

The research uses data from the
Personal Software ProcessSM (PSPSM), which
applies process discipline to the work of the
individual software professional in a class-
room setting. PSP is taught as a one-semes-
ter university course at several universities
or as a multi-week industry training course.
It typically involves 10 programming assign-
ments, using increasingly sophisticated
processes [2]. The life-cycle processes for
PSP are planning, designing, coding, com-
piling, testing, and a post-mortem activity
for learning. The primary development
processes are designing and coding, since
there is no requirements analysis step.

When discussing quality in the software
industry, defects are the common indicator,
although software quality characteristics
include functionality, reliability, usability,
efficiency, maintainability, and portability.
Although other aspects of quality are
important, software quality is measured as
defect density in testing in the analyses
described in this article.

Potential explanatory variables identi-
fied in prior research can be divided into
categories related to the product and

application domain, the technologies used,
the software engineering processes fol-
lowed, and the ability of the individuals
doing the work. Quality issues related to
the customer requirements are outside the
scope of this research. Although require-
ments volatility is a significant quality con-
cern in software projects, requirements
volatility is not an issue for PSP.

Many explanatory factors for software
quality from models such as COQUAL-
MO [3] are out of scope for this research

because they address project and team
issues that are not relevant to the PSP
environment. This highlights the chal-
lenges in generalizing PSP results to soft-
ware work in general, but factors impor-
tant for individual performance should
also be important for teams, projects, and
organizations.

There are four PSP major processes –
PSP0 to PSP3 – with minor variants for the
first three (PSP3 can also be considered a
minor extension of PSP2). Each level
builds on the prior level by adding a few

engineering or management activities. This
minimizes the impact of process change
on the engineer, who needs only to adapt
the new techniques into an existing base-
line of practices. Design and code reviews
are introduced in assignment No. 7. Design
and code reviews are personal reviews con-
ducted by an engineer on his or her own
design or code. They are intended to help
engineers achieve 100 percent yield: All
defects are removed before compiling the
program. Design templates are introduced
in assignment No. 9. The design templates
are for functional specifications, state spec-
ifications, logic specifications, and opera-
tional scenarios.

PSP students are asked to measure and
record three basic types of data: time
(effort), defects, and size (lines of code
[LOC]). All other PSP measures are
derived from these three basic measures.

Data analyzed in this research included
the data used in the Hayes and Over study
[4], as well as additional data collected
through 2001. These rich data sets allow
sophisticated statistical analyses ranging
from simple regression models to multiple
regression models to mixed models that
incorporate random effects and repeated
measures. The conclusions reported are
based on consistent results for multiple
data sets. The data sets are usually split by
assignment 9A or 10A (to remove potential
differences in problem complexity and
ensure a relatively mature process) and by
programming language (to remove tech-
nology differences), both including and
excluding outliers. A data set could there-
fore be described as (9A, C, No Outliers).
In some cases, e.g., when investigating the
impact of programming language used,
different data splits are used as appropriate.

Confirming PSP Quality
Trends 
Process maturity is a generic concept that

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

“My research confirms
... that programmer

ability affects software
quality and, more

importantly, shows that
even top performers can

improve their
performance by a factor
of about 2X by following
disciplined processes.”



PSP/TSP

10 CROSSTALK The Journal of Defense Software Engineering March 2006

can be considered low for PSP0 and high
for PSP3. It is interesting to note that in
COQUALMO, process maturity has the
highest impact of all factors on defect
injection. As can be observed in Figure 1,
which shows the differences in defect den-
sity in testing for each PSP major process, the
software quality trend across the PSP’s
major processes is apparent, confirming
prior analyses.

The comparison circles in the right
part of Figure 1 indicate that the means
for each of the PSP major processes are sig-
nificantly different. The Each Pair,
Student’s t, and the All Pairs, Tukey-Kramer
honest significant difference are separate tests
of the hypothesis that the defect density in
testing for the PSP major processes is signifi-
cantly different. When there is no overlap
of the comparison circles, as in this case,
there is a significant difference, and we
can conclude that the defect density in testing
for PSP0 > PSP1 > PSP2 > PSP3. The
differences between the PSP major
processes are both statistically and practi-
cally significant. Differences greater than
4X show a decrease in defect density in test-
ing of more than 75 percent over the
course of PSP. This is a quality improve-
ment that would be of interest and value
to most software professionals.

These data include some outliers.
Excluding outliers without causal analy-
sis, as well as including them when they
are atypical, can skew results. The analy-
ses reported in this article are performed
both with and without outliers, using
inter-quartile limits (limits set at 1.5 times
the inter-quartile range beyond the 25
percent and 75 percent quartiles) to iden-
tify outliers.

Program Size 
Problem complexity would not appear to be
a significant factor in PSP, given the rela-

tive simplicity of the assignments; pro-
grams smaller than 10,000 LOC are usu-
ally considered simple programs. Solution
complexity is measured by new and
changed LOC. A student’s preferred style
in optimizing memory space, speed, reli-
ability (e.g., exception handlers), generali-
ty, reuse, etc., can lead to radically differ-
ent solution complexities. Since PSP does
not impose performance requirements,
students have significant latitude in how
they solve the problems – latitude that is
available in many industry contexts as
well. Using defect density as a quality
measure should normalize these differ-
ences in solution complexity.

Since defect prediction models typi-
cally use program size as a predictor vari-
able (and many use it as the only predic-
tor variable), this variable is expected to
be significant. Program size was shown to
be a statistically significant effect on defect
density in testing in all of the four data sets
analyzed including outliers, but in only
two of the four data sets excluding out-
liers. The preponderance of the evidence
indicates that program size is related to
software quality, although more weakly
for PSP than for many prior defect pre-
diction models. These somewhat atypical
results highlight the impact of individual
differences on software quality, although
individual differences may be smoothed
out by team performance on a project.

Programmer Ability 
Programmer/analyst capability is difficult to
objectively determine, but the PSP data
provide a direct and objective measure of
programmer ability. This is illustrated in
Figure 2, where defect density in testing was
averaged for the first three assignments
and used to identify the top, middle two,
and bottom quartiles for student perfor-
mance. Note that using defect density as

the measure for ability means that
decreasing value of the measure corre-
sponds to increasing ability, which means
that the top quartile of programmers is at
the bottom of the graph. Programmer abil-
ity, as measured by this variable, was
shown to be statistically significant for
every data set, including and excluding
outliers.

The students who were the top-quar-
tile performers on the first three assign-
ments tended to remain top performers
(with the smallest defect density in testing) in
the later assignments, the middle per-
formers tended to remain in the middle,
and the bottom-quartile performers (with
the largest defect density in testing) tended to
remain at the bottom. (A spike in the data
for assignment No. 3 is consistently
observed for all measures, suggesting that
assignment No. 3 is somewhat more
complex than the norm for the PSP
assignments.)

While top-quartile students per-
formed better than those in the bottom
quartile on average, a disciplined process
leads to significantly better performance
for the bottom-quartile students, and
even the top-quartile students improved
markedly. Throughout the PSP course,
top-quartile students improved their soft-
ware quality by a factor of more than
two, and bottom-quartile students
improved theirs by a factor of more than
four. Variation in performance within
each quartile also decreased markedly.

Potentially Confounding
Variables 
A number of variables could affect the
analyses if not appropriately addressed.
Potential confounding variables include
those associated with instructor differ-
ences; surrogates for ability such as cre-
dentials, experience, recent experience,
and breadth of experience; and technolo-
gy factors such as the programming lan-
guage used.

PSP Classes
There are two situations that could cause
systemic differences across PSP classes:
(1) changes in the teaching materials used
in the PSP class, or (2) differences
between instructors. The possibility of a
trend due to systemic changes in the stu-
dent population does not appear likely
since there are no known reasons for a
systemic change in the student popula-
tion for PSP, although sporadic cases of
exceptionally poorly prepared or well-
prepared classes could occur. The PSP
class has been based on the text “A

0

50

100

150

200

0 1 2 3

PSP Major Process

Figure 1:Trends in Software Quality

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Assignment

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

Top Quartile

Middle Quartiles

Bottom Quartile

Figure 2:Trends for Programmer Quartiles

Each Pair

Student's t

0.05

All Pairs

Tukey-Kramer

0.05

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

(d
e

fe
c

ts
/

th
o

u
s

a
n

d
s

o
u

rc
e

li
n

e
s

o
f

c
o

d
e

)

Figure 1: Trends in Software Quality



Factors Affecting Personal Software Quality

March 2006 www.stsc.hill.af.mil 11

Discipline for Software Engineering”
since its publication in 1995; prior classes
used drafts of the manuscript. All PSP
instructors are qualified and authorized
by the Software Engineering Institute,
and instruction is typically done by teams
of instructors. There would not appear to
be any reason for changes in PSP class
performance over time although there
might be cases where particular classes
might have significantly different results
because of special causes of variation.

Combining a small number of finish-
ing students with one or two students
struggling to finish assignment No. 9
and/or No. 10 leads to the occasional
atypical class, which is not unexpected
given the large number of classes being
analyzed. There does not appear to be a
statistically or practically significant trend
over time, and it seems reasonable to
conclude that, in general, PSP classes are
relatively stable learning environments,
although some students may have trouble
on some assignments.

Finishing the Course (Or Not)
If there is a difference in performance on
the early assignments between the people
finishing the course and those who do
not, the student population may be dif-
ferent from the general programming
population. Finishing the course was
shown to have a statistically significant
effect on defect density in testing in only one
of the four data sets analyzed, including
outliers, and in none of the data sets
excluding outliers. This suggests that
people finishing the PSP course are rea-
sonably typical of programmers who
choose to take the PSP course. This does
not, however, necessarily indicate that
PSP students are representative of the
population of software professionals in
general.

Highest Degree Attained
As illustrated in Figure 3, the highest degree
attained (doctorate [Ph.D.], Master of
Science [MS], Bachelor of Science [BS],
or Bachelor of Engineering [BE]) was
not shown to be a statistically significant
effect on defect density in testing for any of
the data sets analyzed, excluding or
including outliers. The overlap in both
sets of comparison circles graphically
show that defect density in testing for stu-
dents with a doctorate overlaps that of
students with a bachelor’s or master’s
degree.

This result indicates nothing about
whether people who pursue additional
academic credentials will improve their
ability; it simply indicates that they are

not useful distinguishers between stu-
dents in PSP. Although degree credentials
are not a significant factor for PSP
assignments, educational credentials may
contribute to improved performance for
more complex programs where deeper,
more extensive domain or engineering
knowledge may be crucial to understand-
ing both the problem and potential solu-
tions.

Years of Experience
Although some researchers have empiri-
cally found that years of experience are relat-
ed to quality, it was not shown to have a
statistically significant effect on defect den-
sity in testing for any of the data sets ana-
lyzed, excluding or including outliers.
When the studies finding that experience
was a significant factor were performed
in the 1970s and 1980s, entry-level pro-
grammers were relatively unfamiliar with
computers. The familiarity of the general

population with computers has grown
markedly over the last few decades.
Students and entry-level programmers in
the 1990s were likely to be well acquaint-
ed with computers before beginning their
professional careers. The consequence is
that the operational definition of years of
experience for programmers is likely to
have shifted in the last three decades. The
results of the earlier studies may have
been valid and yet be irrelevant to today’s
population of programmers.

This does not imply that experience
does not affect ability. Holmes found that
for his PSP data, collected over a seven-
year period, developer experience was a
significant factor [5]. His results, howev-
er, apply to a single individual engaged in
applying PSP as part of a systematic
improvement program. They indicate
that individual professionals can substan-
tially improve their performance over
time, but they cannot be generalized

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Assignment

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

Top Quartile

Middle Quartiles

Bottom Quartile

Figure 2:Trends for Programmer QuartilesFigure 2: Trends for Programmer Quartiles

0

10

20

30

40

50

60

BE BS MS Ph.D.

Highest Degree

Each Pair

Student's t

0.05

All Pairs

Tukey-Kramer

0.05

Ph.D.

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

(d
e

fe
c

ts
/

th
o

u
s

a
n

d
s

o
u

rc
e

li
n

e
s

o
f

c
o

d
e

)

Figure 3: Differences for Highest Degree Attained



PSP/TSP

12 CROSSTALK The Journal of Defense Software Engineering March 2006

across different individuals, which is the
point of this analysis.

Industry studies of the effect of years
of experience on quality typically use the
average number of years for the team [6].
In averaging experience across the team,
related factors in assigning professionals
to the team with diverse backgrounds
may impact the operational meaning of
experience. The relevant factors may be
related to a diverse team with a variety of
skills and capabilities – years of experience
may be confounded with other factors
related to the skills of the team.

Number of Languages Known
The number of languages known may suggest
the diversity of experience of the program-
mer, which in turn may indicate ability.
While length of experience is usually con-
sidered a poor surrogate for ability, breadth
of experience is considered a more realistic
indicator [7], particularly for programmers
with less than three years of experience [8].
The number of languages that a program-
mer has a working knowledge of may be
considered a reasonable surrogate for
breadth of experience. The number of lan-
guages known was shown to have a statistical-
ly significant effect on defect density in test-
ing in only one of the four data sets ana-
lyzed, including outliers, and in none of the
data sets excluding outliers.

Percent of Time Programming in the
Previous Year
Recent experience in programming is pri-
marily a concern for learning curve
effects associated with programming
skills in general. Given the small size of
the PSP assignments, it seems likely that
the bulk of any learning curve effects
associated with basic programming skills
are concentrated in the first few assign-
ments. Percent of time programming in the pre-
vious year was not shown to have a statisti-
cally significant effect on defect density in

testing for any of the data sets analyzed,
excluding or including outliers.

Programming Language
Although some researchers have noted
that the programming language used does
not appear to be significantly correlated
with productivity or quality except at a
gross level [9], others have found that
programming language can have a signif-
icant impact on both. For example, in
defining the backfiring technique for esti-
mating function points based on LOC,
Jones found noticeable differences
between different languages: It takes 128
LOC in C to implement one function
point, but only 53 in C++ [10]. As illus-
trated by the overlap in the comparison
circles in Figure 4, the programming lan-
guage used was not shown to have a statis-
tically significant effect on defect density in
testing for any of the data sets analyzed,
excluding or including outliers.

Although language may not signifi-
cantly affect defect density, the productiv-
ity difference between languages implies
that the number of defects will vary sig-
nificantly depending on the language(s)
used. In other words, if it takes twice as
many LOC to implement a program in
language A as in language B, then there
will be twice as many opportunities for
defects in the language A program as for
the language B program, even if the defect
density is the same. Because of the impact
of programming language on productivity,
and the related effects on process vari-
ables such as review rates, the programming
language used should not be ignored in ana-
lyzing software quality, although it may
not be a statistically significant variable for
quality (as measured by defect density in test-
ing) when considered in isolation.

Conclusion
This research found that (1) process dis-
cipline is an important factor for software

quality; (2) program size, which is an indi-
cator of solution complexity, is an impor-
tant quality factor; and (3) programmer abil-
ity is an important quality factor when
empirically measured. Other variables
that may appear to be plausible surro-
gates for important areas such as ability
and technology were not shown to be sig-
nificant.

The issue of relative ability of pro-
grammers is particularly important, since
the finding that even top-quartile per-
formers improve more than 2X refutes
those who resist the need for discipline,
while acknowledging that their perfor-
mance is superior and their opportunities
for improvement are less than many of
their colleagues.

This research supports the premise of
PSP and similar process improvement
strategies: Disciplined software processes
result in superior performance compared
to ad hoc processes. This improvement
can be seen in both improved perfor-
mance and decreased variation. It can be
inferred that this is the minimum level of
improvement that can be expected for a
set of programmers since continual
improvement can be expected after the
PSP class.

The practical implications of this
research for software managers and pro-
fessionals are relatively simple, although
they may be challenging to address. First,
although programmer ability is a crucial fac-
tor affecting software quality, surrogates
such as seniority and academic creden-
tials are inadequate for ranking program-
mers, and empirical measures that are
more effective may cause dysfunctional
behavior if used for determining raises
and promotions [11]. Second, consistent
performance of recommended engineer-
ing practices improves software quality,
even for top performers, who may resist
discipline and measurement-based deci-
sions because of their superior perfor-
mance.u

References
1. Paulk, M.C. “An Empirical Study of

Process Discipline and Software
Quality.” Ph.D. diss., University of
Pittsburgh, 2005 <http://etd.library.
pitt .edu/ETD/available/etd-070
82004-155917>.

2. Humphrey, W.S. A Discipline for
Software Engineering. Reading, MA:
Addison-Wesley, 1995.

3. Boehm, B., C. Abts, A.W. Brown, S.
Chulani, B.K. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece.
Software Cost Estimation With
COCOMO II. Upper Saddle River,

0

50

100

C C++ Java VisualBasic

Programming Language

Each Pair

Student's t

0.05

All Pairs

Tukey-Kramer

0.05

D
e

fe
c

t
D

e
n

s
it

y
in

T
e
s
ti

n
g

(d
e

fe
c

ts
/

th
o

u
s

a
n

d
s
o

u
rc

e
li
n

e
s

o
f

c
o

d
e

)

Figure 4: Differences Between Programming Language Used



Factors Affecting Personal Software Quality

March 2006 www.stsc.hill.af.mil 13

NJ: Prentice Hall, 2000.
4. Hayes, W. and J.W. Over. “The

Personal Software Process (PSP): An
Empirical Study of the Impact of PSP
on Individual Engineers.” Pittsburgh,
PA: Software Engineering Institute,
1997.

5. Holmes, J.S. “Optimizing the Software
Life Cycle.” ASQ Software Quality
Professional 5.4 (Sept. 2003): 14-23.

6. Zhang, X. “Software Reliability and
Cost Models with Environmental
Factors.” Ph.D. diss., Rutgers, 1999.

7. Curtis, B. “The Impact of Individual
Differences in Programmers.” Work-
ing With Computers: Theory Versus
Outcome. Ed. G.C. van der Veer.
London: Academic Press, 1988: 279-
294.

8. Sheppard, S.B., B. Curtis, P. Milliman,
and T. Love. “Modern Coding
Practices and Programmer Perfor-
mance.” IEEE Computer 12.12 (Dec.
1979): 41-49.

9. DeMarco, T., and T. Lister. Peopleware.
2nd ed. New York: Dorset House,
1999.

10. Jones, C. “Backfiring or Converting
Lines of Code Metrics Into Function
Points.” Burlington, MA: Software
Productivity Research, Oct. 1995.

11. Austin, R.D. Measuring and Managing
Performance in Organizations. New
York: Dorset House Publishing, 1996.

About the Author

Mark C. Paulk, Ph.D.,
is a senior systems scientist
at the Information Tech-
nology Services Qualif-
ication Center at Car-
negie Mellon University.

From 1987 to 2002, Paulk was with the
Software Engineering Institute at
Carnegie Mellon, where he led the work
on the Capability Maturity Model® for
Software. Prior to joining Carnegie
Mellon, he was a senior systems analyst
for System Development Corporation at
the Ballistic Missile Defense Advanced
Research Center in Huntsville, Ala. He is
a Senior Member of the Institute of
Electrical and Electronics Engineers and a
Senior Member of the American Society
for Quality. Paulk has a Bachelor of
Science in mathematics and computer sci-
ence from the University of Alabama in
Huntsville, a Master of Science in com-
puter science from Vanderbilt University,
and a doctorate in industrial engineering
from the University of Pittsburgh.

IT Services Qualification Center
Carnegie Mellon University
Pittsburgh, PA 15213
Phone: (412) 268-5176
E-mail: mcp@cs.cmu.edu

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

CALL FOR ARTICLES
If your experience or research has pr
to others, CrossTalk can get the w
articles on software-related topics t
Below is the submittal schedule for th

Do You Know How to Merge
Hardware and Software?

CrossTalk is looking for an introductory
article that discusses merging
hardware and software. Since most of
CrossTalk’s articles come from our 
readers, we know this is our best way
to reach you with this request. Call
CrossTalk Associate Publisher
Beth Starrett at (801) 775-4158 or e-mail
<beth.starrett@hill.af.mil> to discuss
your experience in merging hardware
and software, and how to transform your knowledge into an article that can get
your ideas out to more than 100,000 CrossTalk readers.

Also, take a look at CrossTalk’s new Theme Calendar format at
<www.stsc.hill.af.mil/crosstalk/theme.html>.We now provide a link to each
monthly theme, giving greater detail on the types of articles we’re looking for.


